Assembly of single-stranded polydeoxyadenylic acid and β-glucan probed by the sensing platform of graphene oxide based on the fluorescence resonance energy transfer and fluorescence anisotropy.

نویسندگان

  • Qingye Liu
  • Xiaojuan Xu
  • Lina Zhang
  • Xudong Luo
  • Yi Liang
چکیده

Based on the fluorescence resonance energy transfer (FRET) and fluorescence anisotropy (FA), the present study reported proof-of-principle for a highly sensitive and rapid detection technique that can be precisely utilized for investigating the self-assembly of polydeoxyadenylic acid (poly(dA)) and β-glucan, and the interactions of the poly(dA)-β-glucan complex on the surface of graphene oxide (GO). Due to the noncovalent assembly of fluorescein amidite (FAM)-labeled poly(dA) and GO via π-π stacking, the fluorescence of (FAM)-labeled poly(dA) as a molecular aptamer beacon (MAB) was completely quenched by GO. Conversely, the addition of single-stranded lentinan (s-LNT) resulted in the significant restoration of fluorescence due to the formation of poly(dA)-s-LNT complexes with a stiff rod-like structure, which had a weak affinity to GO and kept the dyes away from GO. However, relatively weak fluorescence restoration was observed by adding another single-stranded curdlan (s-CUR) for positive control, indicative of complex formation with higher binding ability to GO. The fluorescence anisotropy (FA) was also combined to confirm the occurrence with different increments of anisotropy relative to the free poly(dA), which could be conveniently extended for detecting the assembly of other biomolecules with higher sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media

A graphene oxide-terpyridine conjugate (GOTC) based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn...

متن کامل

Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform.

Graphene oxide can act as an ultrahighly efficient quencher for upconversion nanophosphors and thus, an extraordinarily sensitive biosensing platform is constructed.

متن کامل

Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to "turn-on" DNA sensing in biological media.

As a platform for "turn-on" DNA sensing, the level of oxidation of graphene oxide strongly affects its fluorescence quenching ability and binding interactions to single-stranded oligodeoxyribonucleotides (ssODNs), leading to a broad range of sensitivity. Fine-tuning the level of oxidation of graphene oxide yields a DNA-detection platform that is highly sensitive in serum and biological media.

متن کامل

Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT.

This paper for the first time reports a chemical method to prepare graphene quantum dots (GQDs) from GO. Water soluble and surface unmodified GQDs, serving as a novel, effective and simple fluorescent sensing platform for ultrasensitive detection of 2,4,6-trinitrotoluene (TNT) in solution by fluorescence resonance energy transfer (FRET) quenching. The fluorescent GQDs can specifically bind TNT ...

متن کامل

A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent asse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 9  شماره 

صفحات  -

تاریخ انتشار 2013